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ABSTRACT

We consider the problem of locating and identifying a collection of finitely many cracks

inside a planar domain from measurements of the electrostatic boundary potentials induced

by specified current fluxes. It is shown that a collection of n or fewer cracks can be uniquely

identified by measuring the boundary potentials induced by n + 1 specified current fluxes,

consisting entirely of electrode pairs.
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1 Introduction

In a recent paper, [1], A. Friedman and M. Vogelius proved that the presence

of a single crack, its shape and location inside a planar domain may be de-

termined from measurements of the steady state boundary voltage potentials

corresponding to two specific boundary current fluxes. In the present paper

we extend this result to any finite number of cracks: we show that voltage

measurements corresponding to n + 1 specific fluxes suffice to determine the

location and shape of a collection of n (or fewer) cracks. In contrast to [1] the

fluxes we use here all consist of electrode pairs - exactly the type of fluxes

which are used for the computational algorithm developed in [2].

Let Q be a simply connected domain in 1R2 with a smooth boundary.

In order to describe our result in detail we need to define the notion of a

collection of cracks. By a C 2 -curve, o, we understand a twice continuously

differentiable map: [0, 1] -+ Q with non-vanishing derivative. A collection of

cracks consists of a finite number of mutually disjoint, non-self-intersecting

C 2-curves Uk , k = 1, ... ,n. We use capital Greek letters to denote

collections of cracks, e.g. E = {aOk}=1; note that n may possibly be zero,

so that E is empty. We shall also use the notation Ok and E for the image

of each of the individual curves and the union of all the images, respectively

(i.e., E = U.k=1 'k). Let -y : N --+ R be a positive function (the known

reference conductivity). Throughout this paper we assume that

-y is real-analytic on n.

In the following, when a function is referred to as being analytic, this shall



always mean real-analytic. Quite frequently in the literature the term crack

is used synonymously with an electrically insulating crack: if 0 represents

the boundary voltage, then the steady state voltage potential satisfies

V.(Vv) = 0 inQ\ E,
Dv
- = 0 onE,
av

v = 0 on ag.

In this framework the inverse problem is to determine E from knowledge of

several pairs We shall, instead of working with the potential v,

opt to work with its "-harmonic" conjugate, u. This function is related to

v by

(Vu)' = /Vv; (1.1)

where I_ indicates counter-clockwise rotation by 7r/2 . Let T be a fixed point

on 90, in a neighborhood of which 0 is smooth. Let rk be a smooth curve in

Q \ E connecting T to an interior point of the crack ak, and let s denote the

unit tangent direction along Tk, pointing from T towards Ok. Define constants

c(k) v (T),
Tk "y - -d s + u

where v denotes the normal field v = s'. The "--harmonic" conjugate, u,

solves

V.(-y-'Vu) = 0 inQ\E,
u = c (k ) on Ork k = 1,...,n (1.2)

-i9u = -- on iQ,
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where s denotes the counter-clockwise tangent direction on 0.

From (1.1) it follows immediately that knowledge of uIan leads to knowl-

edge of--y20n°a = -(u2on)o a , and vice versa. Therefore knowledge of pairs

(itn,4') is equivalent to knowledge of corresponding pairs (t,'i4I:,n), where

and b are related by 4b = Physically (1.2) corresponds to a collection

of perfectly conducting cracks. One way to solve (1.2) is to minimize the

energy

J~1_,IIW2 dr - Ij4'w ds

in the space II(Q) n {w = const on each ak E E} (such minimization gives,

modulo a single undetermined constant, exactly the values on ak, k = 1. n

described above). This method works provided , E H- 1 / 2((Q). The fluxes

we shall apply here, however, correspond to single pairs of electrodes, i.e.,

we shall take 0 of the form V' = 6p. - p 1, where Pr and P1 are two distinct

points on Of?. Such 4' are not in H-1/2 (Q) - the solution, u, is therefore not

in H' (Q) and it is not obtained as a minimizer of energy. Rather, u is a weak

solution to (1.2); it is smooth everywhere except at PO and P and at the

endpoints of the cracks. At P0 and P1 the function u has singularities of the

form - (Po)/7r logr, r =x - P0 , and (Pr)/, log r, 7r Ixr- P, 1, respec-

tively, at the endpoints of the cracks it has in general r' 2-type si iglarit ies.

cf. [1].

For our uniqueness result it is not necessary that we have solnitions , hIcli

attain exactly the constant values on the cracks de'scrilwd alm,'c - 'IAv m-l ,f

constants will do. To construct the specific bounidary curt ls. 'k.t IP,.... 1.1

be M + 1 different (fixed) points on 0fQ: we assume that diese u poiit are,
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labeled in order of counter-clockwise appearance, starting from IP 0 . In our

first uniqueness result we utilize solutions to the boundary value problems

1\7 -17j)= 0 illQ\~

zj = constant on each Oak E _ (1.3)

OVj 6 p- 6 p? on&Q.

Theorem 1.1 Let f= {k }= and = {"k} 1 denote two collections

of cracks cotaini(d in the dontai, Q, with max(m, n) + 1 < 1. Lct 11j.

j 1...,.1 denote solutions to (1.3) anid let Uij, j 1,... , M denote

solutions to (1.3) with E ,eplaccd by S. Then 11j -Qj on D)Q \ Ui=L0{PI} for

j = .1 ... 1J implies that v = ,5.

Instead of prescribing fixed fluxes - _ ='j and measuring it, 1, , we

can equally well prescribe fixed boundary voltages wjlro = j and measure

-A~wi Hn. For that purpose we utilize solutions to the following boundary

value problems

7.(.-Vw 3 ) = 0 in Q\.

wj = constant on each Uk E 5, (1.1)

(j = 1p'_' il on Q.,

where l 1 _,.p, denotes the characteristic function of tile coult er-clockwise

curve from Pj-1 to Pj. The function iv, is a weak solution to (1.-I) - it is

not in H (Q), and therefore not obtained as a mininizer of energy. wj has a

singularity of the form -0/7r at P- 1 , 0 = arg(x - Pj_) and has a singularity

of the form 0/,r at P,, 0 = arg(x - P). At the endpoints of the cracks w,

has in general r'/ 2-type singularities.



Theorem 1.2 Let E = {k}., and - {&k}-rI denote two collections of

cracks contained in the domain Q, with max(m, n) + 1 < M. Let wj, j =

1,... , M denote solutions to (1.4) and let @j, j = 1,..., M denote solutions

to (1.4) with E replaced by E. Then - 'v = on (90 \ UAf {P} for

j M implies that =YE.

REMARK: As was the case with the first theorem, this second theorem also

has an alternative formulation in terms of cracks that are insulating. In that

case one would prescribe boundary fluxes -O(lp, _,p,)/Os = bp - 6p,_ and

measure the corresponding boundary voltages.

2 Preliminaries

The proof of our main results consists in a very detailed analysis of the

structure of the level curves of solutions to the equation V • (- 1 Vu) = 0.

For that purpose we shall need two auxiliary lemmas.

Lemma 2.1 Let u satisfy V-=Vu) 0 in 12\E with-'Ou/Ov = Ej 3 j6p,

on c9Q, and u constant on each uk. Let p be a non-empty analytic curve in

Q with p fl E = 0 along which u is constant. Then there exists an analytic

curve p' with p C p' such that

(2.1a) u is constant on p'

(2.1b) p' has one endpoint on X2 or ok for some k

(2.1c) p' has the other endpoint on 09Q or at for some I with I $ k.
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The proof of this lemma is identical to the proof of lemma 2.3 in [1]. We

shall not repeat the the proof here. The second lemma we need concerns the

existence of intersecting level curves. Some of the details of the proof of this

result are not unlike those found in the proof of lemma 2.3 in [1], but for the

convenience of the reader we give a complete proof here.

Lemma 2.2 Let v satisfy V.(-'Vu) = 0 in £2\E with 7-j1Ou/Ov = j Ojpb,

on 9Q, and u constant on each Ck. Let p be a non-empty analytic curve in 9

with p n E = 0 along which u is constant, and assume that x* is an interior

point of p where Vu(x*) = 0. Then there exists an analytic curve p' which

has x* as an interior point such that

(2.2a) p' n p = {x*}

(2.2b) u is constant on p'.

Proof: Let (r, 0) E [0,c] x [0, 2r] denote polar coordinates at x*. Since

Vu(x*) = 0 we know that 2u(0, 0) = 0, and by expanding in a Taylor series

in r we get

u(X) = u(x*) + rN(a sin NO + bcos NO + rA(r, 0)),

for some a, b (not both zero) and some N > 2. Here we have used that u

is non-constant and satisfies V. (--'Vu) = 0 near x*, and we have used

that -I-1 is analytic (the case of a constant u is trivial). We may without

loss of generality assume that the tangent to p at x* is {(r,0), r > 0} U

{(r, 7r), r > 01. It follows that b = 0, i.e.,

u(x) -= u(x*) + arN (sin NO + rA(r, 0)).
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Since u is analytic near x*, it is well known that u as a function of (r, 0) is

analytic on [0, c] x [0, 27r], the main point being that it is analytic at r = 0

and therefore also has an analytic extension to [-c, c] for a sufficiently small E

(indeed the analytic extension for negative r is given by ii(r, 0) = u(-r, 0+7r),

0+ 7r taken modulo 27r). It follows that A(r, O) also has an analytic extension

near r = 0; we denote this extension by A(r, 0), r E [-c, ,] x [0, 27T]. The

function F(r, 0) = sin NO + rA(r, 0) satisfies

F(0,r/N) = 0 and F(0,7r/N) - -N,

and therefore, by the implicit function theorem, it is possible to find a unique

analytic function O(r) such that 0(0) = 7r/N and {(r,0) : F(r,0) = 0}

coincides with {(r,O(r))} in a neighborhood of (0, 7r/N). The curve, p', given

by

(r cos O(r), r sin O(r))+ x

is an analytic curve through x*, w, ich satisfies p' n p = x* and which by its

very definition is a level curve for u. M

3 Proof of Theorem 1.1

Let 0 be the open set enclosed by E and t, i.e., the set of points in

Q \ (E U t) from which it is only possible to reach OQ by crossing E or

. Since Q \ (0 U 2 U t) has only one connected component, it follows from

the assumptions about the bound;iv data (by unique continuation) that

uj = ii, in \ (OU E U1, ...,M. (3.1)
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If 0 is nonempty then 00 consists of pieces of curves from E and YZ; on each

of these pieces either uj or fij, is constant. Due to (3.1) it now follows that u,

is constant on each of the pieces that make up 0. Each function uj therefore

assumes finitely many values on O (at most m + n). Since uj is continuous

in Q (cf. [1]) we get that uj is constant on each connected component of Wo.

Each connected component of 0 is simply connected, and it now follows, by

the maximum principle, that uj is constant in each connected component of

0. This implies that uj is constant in all of Q - a contradiction. We thus

conclude that 0 is empty, so that uj = fij in Q \ (E U t); by continuity it

follows that

uj =j in Q j=1,...,M. (3.2)

Let us assume that E and t are not identical. We may assume that there

exists a curve p contained in &k for some k with p n r 0. Based on (3.2)

we conclude that the functions uj are all constant on p. There must exist a

point on p where Vul 5 0, since otherwise ul is constant in Q) ( by unique

continuation); the implicit function theorem asserts that p must be analytic

near this point. By shortening, if necessary, we may assume that the entire

curve p is analytic. Let v be a unit normal vector field on the curve p and let

x1,... , XM-1 be distinct interior points on p. Let a,,..., a M denote numbers,

not all zero , satisfying the underdetermined set of linear equations

m- 9uj (X,)C'j = 0, 1i= 1,. .. , M-1I.

j=j

Define the function
Mi L(x) E Oj 11j(x) (3.:3)
j=l



for x E Q. The curve p is also a level curve for u Applying Lemma 2.1 we

obtain an analytic curve pa containing p which satisfies (2.1a)-(2.1c), i.e.,

(3.4a) u is constant on po

(3.4b) p0 has one endpoint on 0f or O'k for some k

(3.4c)po has the other enipoint on 0OQ or o7 for some I and I k.

For x E p0 we have IVu(x)l IOu/u(x)I. zFrom equation (3.3) it fol-

lows that Ou/6v(xj) = 0, so that Vu(xi) = 0 for i = 1,..M., - 1. Using

Lemma 2.2 we may now for each of the critical points xi construct an analytic

curve pi such that

(3.5a) p, n P0 = {,

(3.5b) u is constant on pi.

Lemma 2.1 permits us to extend each of the curves pi until it hits the bound-

ary or one of the cracks in E, this way we obtain curves pi which in addition

to (3.5a) and (3.5b) satisfy

(3.5c) pi has one endpoint on at or Ok for some k,

(3.5d) pi has the other endpoint on OQ or al for some I an. I - k.

The fact that the extended curve pi still only intersects p0 at xi is proven as

follows: if pi intersected po at some other point x' then there would be some

nonempty region 0 enclosed by po and pi with u constant on 00. By the max-
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imum principle u would be constant on 0 and hence it would be constant on

all of Q2. This clearlv contradicts the fact that -U'Ov = '-I aj(6p° - 6p,)

on Ofl where the Pj are distinct and at least one aj is nonzero. Since all the

curves pi intersect po, the function u assumes the same constant value on
UM-1

i=0 pi. Note that no two of the M - 1 curves Pi,... ,pM-1 can intersect,

for then we would have some nonempty region 0 enclosed by the M curves

Po, pi,..., PM-i, with u constant on aO - a contradiction. For a similar rea-

son none of the curves po, pi, . . ,PM-I can self-intersect. Between the Al

curves Po, Pi,..., PM-I we have a total of 2M endpoints. Note that no two

of these curves can terminate on the same crack ak, for then we would have

some region 0 bounded by these curves and the crack oh, with u constant

on 90 - a contradiction. There are n cracks in F, so it follows that there

must be at least 2M - n points on cf) at which the curves p(, pl,..., pA.-I

terminate. Since the curves pi,... , PM-i do not intersect and each only in-

tersect po at one point it is easy to see that any connected component of

UMLo 1pi has a part of its boundary in common with OP, and that the

number of connected components is exactly equal to the number of terminal

points of the curves Po,P,. .. ,PM-I that lie on af (at least 2J1 - n). A

situation corresponding to n = 2 api M = 4 is schematically shown in figure

1. The Neumann data for u has the form

.- =1: 06pon Of).
av j=0

Let M' + 1 < M + 1 be the number of nonzero O's in the above sum, i.e.,

M' + 1 is the total number of sources and sinks (for u) on Off. We note that

none of the curves Po, Pl,. . . , pM-I can terminate at a source or a sink, since
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PO P4

Figure 1:

uJ approaches oo there.

If Al+ (M -M') > n + 1 then it follows that 2M -n = M + (M!-

M') - n + M' > M' + 1, and therefore we conclude that at least one of the

conectd cmpoent of~ \UiJo Pi is bounded by a level curve for u and a

portion of 06i on which the normal derivative of u vanishes. This forces u to

be a constant - a contradiction. Hence we see that if M + (M - M') > ni + 1,

then the assumption that Z and F, are different is incorrect.

Since M > n+l and M > M' we always have that M+(M-M') >_ n±1.

The only case we have not analyzed yet is therefore M + (M - M') = rz + 1,

or equivalently, M' = M = n + 1. None of the curves Po, Pi,. . .,PM-i can

now terminate at any of the points P%, j = 0,... , M (since juj approaches
oo there). Furthermore, each of the connected components of Q! \ 'p,

has at least one of the points P3 on its boundary. If not, the argument from
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the case M + (M - M') > n + 1 leads to a contradiction. There cannot be

one connected component, the boundary of which contains two or more of

the points Pj, because then, due to the identity 2M - n = M + 1, there

would automatically have to be one connected component, the boundary of

which contained none of the points Pj - a contradiction. In summary, each
conectd ompn.-t f f \M-1

connected compon-nt of Q) \ Uj=0 pi has exactly one of the points Pj on its

boundary. This means that there are exactly M + 1 connected components

and therefore exactly M + 1 terminal points of the curves po, pi,. .. , PM-1 on

fQ. This leaves 2A1- (M+ 1) = M- 1 = n terminal points that fall on cracks

- one on each crack of E. /,From the inequality n + 1 = M > max(m, n) + 1

we conclude that n _> m. If n = 0 it would follow that m = 0, so that

both E = = 0 - a contradiction. There is therefore at least one crack 0rk0

in the collection E. The crack aOk0 is contained in the closure of one of the

connected components of Q\uyLjpi; we denote this connected component by

0. Furthermore we denote by p' that part of Uyi-'pi which connects ak0 to

po. p' must necessarily, due to the construction of the curves pi, be an interior

boundary of 0. A situation corresponding to n=2 and M=3 is illustrated in

figure 2. Let PJo denote the point which lies on 0. We may without loss

of generality assume that #jo is negative (so that PJo is a sink). Consider

the maximum of u on 0. This maximum must be achieved at a boundary

point, and it cannot be near Pjo, since u behaves like -/-3jy(Pj,)/17r logr

there. Since 2u is zero on Of \ UIj={PjI it now follows from the strong

version of the maximum principle that the maximum of u on 0 is attained

on that part of 00 which comes from u-l 1pi; in particular the maximumn is

attained all along p'. Let x0 be an interior point on p' and let B C 0 U p' be

12



PO

0P

P2

Figure 2:

a ball centered at xo which does not intersect E. The function u satisfies the

elliptic equation V . (f-y'Vu) = 0 in B (and is not constant) and therefore

by the maximum principle

infu(x) < u(xo) < sup u(x). (3.4)
B B

On the other hand B C O so

u(xo) = maxu(x) >_ sup u(x),
0 B

and this immediately leads to a contradiction with (3.4). Hence we conclude

that also in the case M + (M - M') = n + 1 we cannot have that v and

are different, and this completes the proof of Theorem 1.1. 0

13



4 Proof of Theorem 1.2

The proof of Theorem 1.2 goes entirely along the lines of the previous proof

up to and including the construction of the function u and the curves pi

(using the equivalent of Lemma 2.1 and Lemma 2.2 with Dirichlet bound-

ary conditions of the form E jlp,_,p,). From there the proof proceeds as

outlined below.

The points Po,..., PM divide the boundary OQ into M + 1 half-open

curves

[PO, P1),. .. ,[PAI1,PM), and [PM,PO).

Here we have used the notation [P, Q) for the counter-clockwise curve from

P to Q, including P. The function u is constant on each of the curves

[Po, P 1),..., [PM-PM), and [PMPo) (on the last curve, u is actually zero).

The curves pO,... , PM-I have at least 2M-n terminal points on the boundary

of Qi, and we note that in this case the curves may very well terminate at

one or more of the points Po,..., PM. If 2M - n > M + 1 (i.e., M > n + 1)

it therefore follows that at least one of the curves [P0 , Pi),..., [PAI-1, PAI),

and [PM, Po) contains two terminal points of Uj-p1 . Consequently there

is a connected component of 9 \ U' pi which as its boundary has a level

curve of u - a contradiction.

We now consider the remaining case: M = n+ 1. In this case we conclude

that any one of the curves [Po, P1),...,[PM-I,PM), and [PM, Po) contains
LM-1

exactly one terminal point of U=o pi. This leaves 2M - (M + 1) = Al- 1 = n

terminal points of the curves po,... , PM-1 that fall on cracks - one on each

crack of E. We also see that there are exactly M + 1 connected components

14



of f \ Uyo'pi. For each connected component, that part of the boundary

which is shared with 0f9 consists of a single curve between two adjacent

terminal points of Ui=0lpi (these points lie on adjacent curves [Pj-, Pj) and

[Pj, Pj+'), indices counted modulo M+1). As in the proof of Theorem 1.1

we may argue that n > 1, so that E contains at least one crack ork0 . Let 0

denote the connected component of Qt \ U'ijopi, whose closure contains rk0 ,

and let p' denote that part of U A'o'pi, which connects Uk 0 to pO. p' must

necessarily, due to the construction of the curves pi, be an interior boundary

of 0. The (interior) part of the boundary of 0 which is shared with (9Q

consists of a curve from P to Q with P E [Pio- 1, Pjo) and Q E [Pj0 , PJo+1 ) for

some jo (mod M + 1). The rest of the boundary of 0 is a level curve for it. It

is now very easy to see that u takes at most two values on 00. Consequently

either the minimum or the maximum of u on O is attained on p'. This leads

to a contradiction, just as in the proof of Theorem 1.1. 0
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